
ZTX653DCSM

NPN DUAL TRANSISTOR IN A HERMETICALLY SEALED CERAMIC SURFACE MOUNT PACKAGE FOR HIGH RELIABILITY APPLICATIONS

MECHANICAL DATA Dimensions in mm (inches)

FEATURES

- DUAL SILICON PLANAR NPN
 TRANSISTORS
- HERMETIC SURFACE MOUNT PACKAGE
- CECC SCREENING OPTIONS
- SPACE QUALITY LEVEL OPTIONS

LCC2 PACKAGE Underside View

PAD 1 – Collector 1	PAD 4 – Collector 2
PAD 2 – Base 1	PAD 5 – Emitter 2
PAD 3 – Base 2	PAD 6 – Emitter 1

ABSOLUTE MAXIMUM RATINGS PER SIDE ($T_C = 25^{\circ}C$ unless otherwise stated)

V _{CBO}	Collector – Base Voltage	120V
V_{CEO}	Collector – Emitter Voltage	100V
V_{EBO}	Emitter – Base Voltage	5V
I _C	Continuous Collector Current	2A
P _{TOT}	Power Dissipation @ $T_{amb} = 25^{\circ}C$	1.0W
	Derate above 25°C	–55 to 150°C
T _j T _{STG}	Operating And Storage Temperature Range	8mW/°C
$R_{\theta J-A}$	Junction - Ambient Thermal Resistance	125°C/W

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

ZTX653DCSM

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise stated)

Parameter		Test Conditions		Min.	Тур.	Max.	Unit
V _{(BR)CBO}	Collector – Base Breakdown Voltage	I _C = 100μA		120			
V _{(BR)CEO}	Collector – Emitter Breakdown Voltage	I _C = 10mA		100			V
V _{(BR)EBO}	Emitter – Base Breakdown Voltage	I _E = 100μA		5			
I _{CBO}	Collector – Cut-off Current	V _{CB} = 100V				0.1	μΑ
			$T_{\rm C} = 100^{\circ}{\rm C}$			10	
I _{EBO}	Emitter Cut-off Current	$V_{EB} = 4V$				0.1	
		I _C = 500mA	I _B = 50mA*		0.2	0.3	
V _{CE(sat)} (Collector – Emitter Saturation Voltage	I _C = 1.0A	I _B = 100mA*		0.35	0.5	
		I _C = 2A	I _B = 200mA*		0.8	1.0	V
V _{BE(sat)}	Base – Emitter Saturation Voltage	I _C = 1.0A	I _B = 100mA*		1.0	1.3	
V _{BE(on)}	Base – Emitter Turn-On Voltage	I _C = 1.0A	$V_{CE} = 2V^*$		0.95	1.2	
H _{FE}	DC Current Gain	I _C = 50mA	$V_{CE} = 2V^*$	70	200		
		I _C = 500mA	$V_{CE} = 2V^*$	100	200	300	
		I _C = 1.0A	$V_{CE} = 2V^*$	55	110		1 –
		I _C = 2A	$V_{CE} = 2V^*$	25	55		

* Pulse test t_p = 300ms , $\delta \leq 2\%$

DYNAMIC CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise stated)

	Parameter	Parameter Test Conditions		Min.	Тур.	Max.	Unit
f _T	Transition Frequency	$I_{\rm C} = 100 {\rm mA}$ $V_{\rm CE} = 5 {\rm V}$	f = 100MHz	140	175		MHz
C _{obo}	Output Capacitance	V _{CB} = 10V f = 1.0MHz				30	pF
T _{on}	Switching Times	$I_{\rm C} = 500 {\rm mA} {\rm V}_{\rm CC} = 10 {\rm V}$			80		ns
T _{off}	Switching Times	I _{B1} =I _{B2} =50mA			1200		115

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.